Новости

13 Августа, 2020 15:06

Материаловеды из МГУ научились управлять кристаллизацией перовскитных солнечных батарей

Сотрудники лаборатории новых материалов для солнечной энергетики факультета наук о материалах МГУ изучили процессы формирования светопоглощающего слоя перовскитных солнечных батарей и открыли 4 новых соединения, которые образуются на начальном этапе его кристаллизации. Результаты работы опубликованы в престижном международном журнале Chemistry of Materials.
Источник: pixabay.com
Источник: Алексей Тарасов
Источник: Алексей Тарасов
3 / 4
Источник: pixabay.com
Источник: Алексей Тарасов
Источник: Алексей Тарасов

Перовскитные солнечные батареи — новое поколение устройств, преобразующих энергию солнечного света в электричество. В настоящее время КПД таких устройств составляет более 25%, превышая рекордные значения наиболее распространённых сегодня солнечных батарей на основе поликристаллического кремния.

Основа перовскитного солнечного элемента — тонкий слой кристаллического светопоглощающего материала — гибридного перовскита. Этот материал имеет такую же структуру, как и одноимённый минерал «перовскит», однако совсем иной химический состав. В отличие от природного минерала, имеющего химическую формулу CaTiO3, гибридные перовскиты, синтезируемые в лаборатории и используемые для солнечных батарей, состоят из органических (метиламмоний, формамидиний) и неорганических (ионы свинца, брома, йода) ионов. Поскольку такие соединения сочетают органическую и неорганическую части, их называют гибридными, а их общая формула может быть представлена как APbX3 (A = MA, FA; X = I, Br).

Химический состав гибридного перовскита определяет его свойства. Например, насколько хорошо он будет поглощать свет и насколько устойчив будет к факторам окружающей среды. Последние исследования в области перовскитных элементов показали, что использовать катион формамидиния предпочтительнее, чем катион метиламмония: получаемые на его основе перовскитные солнечные батареи обладают большей стабильностью и эффективностью.

В отличие от других светопоглощающих материалов, гибридные перовскиты имеют важное преимущество: их можно получать кристаллизацией из растворов в органических растворителях (DMF или DMSO). Несмотря на то, что количество работ, посвящённых растворным методам получения гибридных перовскитов исчисляется уже тысячами, механизм кристаллизации, критически влияющий на свойства получаемого материала, по-прежнему оставался малоизученным.

Сотрудники лаборатории новых материалов для солнечной энергетики факультета наук о материалах МГУ ранее установили, что кристаллизацией гибридного перовскита MAPbI3 из DMF можно управлять, контролируя образование промежуточных фаз, а изучение взаимодействие перовскитов с растворителями позволило сотрудникам разработать новую систему классификации растворителей.

В новой работе учёные рассмотрели все возможные составы кристаллизуемой системы — варьировали тип катиона, аниона, тип растворителя, а также соотношение исходных реагентов в растворе — и установили, какие соединения образуются в ходе кристаллизации данных систем. Отельное внимание было уделено системе с катионом формамидиния, которая в настоящее время считается наиболее перспективной для создания высокоэффективных перовскитных солнечных элементов. В ходе работы было обнаружено 4 новых промежуточных фазы с этим наиболее перспективным катионом и показаны существенные различия в пути кристаллизации в зависимости от состава раствора.

«Проведённая работа имеет важное фундаментальное значение, поскольку мы изучили пути кристаллизации для всех возможных случаев. Это позволило показать полную и завершённую картину того, какие промежуточные соединения могут образовываться при кристаллизации перовскитов с различным составом из различных растворителей. Полученные результаты имеют также и непосредственную практическую значимость. Как нами было показано ранее, путь кристаллизации напрямую обуславливает свойства получаемого материала. Благодаря нашей работе теперь стало известно, какие возможные продукты могут образоваться при получении гибридных перовскитов, и как следует выбирать состав, чтобы управлять кристаллизацией. Таким образом, рациональный выбор составов и контроль условий кристаллизации позволят получить более стабильные и более эффективные перовскитные солнечные батареи», — рассказал руководитель исследования Алексей Тарасов, кандидат химических наук, заведующий лабораторией новых материалов для солнечной энергетики факультета наук о материалах и старший научный сотрудник химического факультета МГУ.

Отдельно стоит отметить, что в работе принял участие студент 4 курса факультета наук о материалах Совместного университета МГУ-ППИ в Шэньчжэне Ли Юймао. Это уже вторая опубликованная работа в области перовскитных солнечных элементов, выполненная при участии студентов ФНМ Совместного университета МГУ-ППИ в Шэньчжэне.

Работа поддержана грантом Российского научного фонда.

18 Сентября, 2020
Создан программный комплекс для моделирования самосборки молекулярных слоев
Российские ученые разработали программу, которая позволяет моделировать процессы на поверхностях тве...
18 Сентября, 2020
Исследование алмазного потенциала Архангельской области позволит продолжить добычу алмазов в регионе
Российский научный фонд в рамках президентской программы исследовательских проектов выделил 15 млн р...